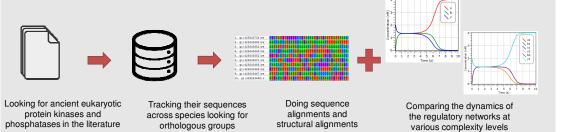

Analyzing efficiency of biological switches

Hernansaiz-Ballesteros, R.D.¹, Dalchau, N.², Cardelli, L.^{2,3}, Csikász-Nagy, A.^{1,4}

- Randall Division of Cell and Molecular Biophysics and Institute of Mathematical and Molecular Biomedicine, King's College London, London, SE1 1UL, UK
- ² Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige 38010, Italy

Introduction

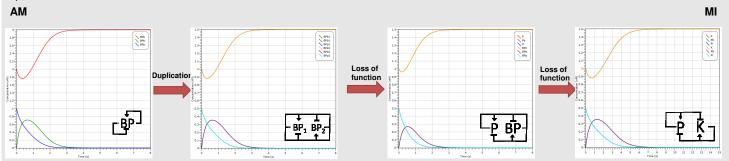
The cell cycle transition between interphase and Mitosis (G2/M) is a highly controlled step. The core of the switch (CC) are two positive feedback loops, where a kinase, CDK, activates its activator (cdc25), and inhibits its inhibitor (wee1). This core allows the irreversible transition, but it is not fully efficient in terms of speed and reaching the maxima. Therefore, other molecules are vital, like phosphatase PP1/PP2A and kinase GWL¹ (GWL). Although the GWL system is an efficient switch (fast, robust and reliable), it has been shown these properties can be achieved by a simple system, the Approximate Majority algorithm (AM)1,2



Objectives

Why do biological systems have evolved in complexity when simpler systems can lead to the same dynamical behaviour? What are the benefits of an increasing in complexity?

How phosphatases and kinases, the main players of the G2/M transition, have evolved?


Strategy

Preliminary results

Events of (de)phosphorylation emerge at an early point in the evolution, probably before the division of the three kingdoms4. For kinases, piD261/Bud32 or RIO kinases could be the most ancient elements of the eukaryotic Protein Kinases (ePKs). Phosphatase families are more recent in the evolution, but it is possible that one of the most ancient molecules of this family belongs to the Low Molecular Weight PTP (LMW PTP) 5. Interestingly, there is not evidence of a relationship between the number of phosphatases and ePKs (Archaea)5.

Events like mutation and duplication increase the complexity of the networks. We have shown that a complex network like a mutual inhibition (MI) can arise from a simple one (AM) by duplication events and loss of function mutations.

Significance of the project

Activation/Inhibition of molecules by (de)phosphorylation is one of the most extended mechanisms in biology for regulating molecular activity. Understanding the evolutionary process of phosphatases and kinases, the main players in the G2/M transition, is crucial to understand how cell cycle is regulated. Why are some elements more likely to be conserved than others? Why do networks increase their complexity during evolution if there are simple systems that are already efficient?

References

- Cardelli, L., & Csikász-Nagy, A. (2012). The cell cycle switch computes approximate majority. Scientific reports, 2.
- Angluin, D., Aspnes, J., & Eisenstat, D. (2008). A simple population protocol for fast robust approximate majority. Distributed Computing, 21(2), 87-102.

 Hara, M., Abe, Y., Tanaka, T., Yamamoto, T., Okumura, E., & Kishimoto, T. (2012). Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nature communications, 3, 1059.
- Kennelly, P. J. (2002). Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS microbiology letters, 206(1), 1-8. Kennelly, P. J. (2014). Protein Ser/Thr/Tyr phosphorylation in the archaea. Journal of Biological Chemistry, 289(14), 9480-9487.